T098 (c) ibhxws webservices

 

Tragwerke, Schnittgroessen, Vorbemessung

Rechteckrahmen (Flaechenlagerung) nach KLEINLOGEL

Rahmenform 98

 

Prinzipieller Ablauf der Nutzung des Dienstes:

1. Parameter eingeben bzw. waehlen

2. Dienst starten mit 'go' oder

2. Beispiel in Liste anklicken

3. Parameter aendern (weitere Nachweise)

4. Dienst starten mit 'go'

5. Ergebnistext markieren und kopieren

6. Ergebnistext in Ihre Dateien einfuegen

7. Mit ONLINE-PDF drucken oder lokal speichern

 

Structures, internal forces, predimensioning

Rectangular frame (distributed foundation) according to KLEINLOGEL

Frame shape 98

 

Using Webservice

1. Input or choose values

2. Start webservice with 'go' or

2. Start example in black list

3. Change values (new calculation, new action)

4. Start webservice once more with 'go'

5. Copy result sets of service to your local editors or programs or

6. Use ONLINE-PDF for printing or local saving

 

 

 

Hintergrundinformationen zum Webdienstes:

Background informations webservice:

Rahmenform 98 - frame shape 98
Festwerte - fixed values
k1= J3/J1
k2 = (J3/J2)*(h/l)
K1 = 2*k2 + 3
K2 = 3*k1 + 2*k2
K3 = 3*k2 + 1 - k1/5
K4 = 6*k1/5 + 3*k2
C1 = K1*K2 - k2*k2
C2 = 1+ k1 + 6*k2
Bezeichnung der Laengskraefte normal forces
N1 im unteren Riegel bottom rail
N3 im oberen Riegel top rail
N2 im linken Stiel left frame post
N2' im rechten Stiel right frame post
Zug positiv, Druck negativ tension positive, pressure negative
Bodendruck = geradlinig für Faelle 98/1 ... 13
soil pressure = straight line for cases 98/1 ... 13
Bodendruck = hohles Trapez für Faelle 98/14 ... 16
soil pressure = hollow trapezoid for cases 98/14 ... 16
Momente der nicht direkt belasteten Staebe, alle Lastfaelle:
moments of not direct loaded members, all load cases:
My1 = MA*y1'/h + MB*y1/h
My2 = MC*y2/h + MD*y2'/h
Mx2 = MB*x2'/l + MC*x2/l
omegaD' = x1'/l - (x1'/l)^3
omegaD = x1/l - (x1/l)^3
omegaV = (x1' - x1)*x1*x1'/(l^3)

 

Fall 98/1 - case 98/1
Oberer Riegel beliebig senkrecht belastet
X1 = [F*l*k1*K1 - 2*(L + R)*k2]/(4*C1)
X2 = [2*(L + R)*K2 - F*l*k1*k2]/(4*C1)
X3 = [10*(L - R) + (Sr - Sl)*k1]/(20*C2)
p1 = 2*(2*Sr - Sl)/(l^2)
p2 = 2*(2*Sl - Sr)/(l^2)
MD = - X1 + X3
MB = - X2 - X3
MC = - X2 + X3
MA = - X1 - X3
N1 = - N3 = - (X1 - X2)/h
N2 = - (Sr + 2*X3)/l
N2' = - (Sl + 2*X3)/l
Mx1 = p1*(l^2)*omegaT'/6 + MA*x1'/l + MD*x1/l
omegaT' = omegaD' + i*omegaD i = p2/p1
Mx2 = Mx0 + MB*x2'/l + MC*x2/l
==> F in l/3: Sr = 2*Sl p2 = 0
==> F innerhalb l/3: Sr > 2*Sl p2 = negativ
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/2 - case 98/2
Oberer Riegel beliebig senkrecht belastet, symmetrisch
MA = MD = - [F*l*k1*K1 - 4*L*k2]/(4*C1)
MB = MC = - [4*L*K2 - F*l*k1*k2]/(4*C1)
p = F/l
N1 = - N3 = (MA - MB)/h
N2 = N2' = - F/2
Mx2 = Mx0 + MB
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/3 - case 98/3
Linker Stiel beliebig waagerecht belastet
MA = - k2*(L*K1 - R*k2)/(2*C1) - [Sl*K3 + (L + R)*k2]/(2*C2)
MD = - k2*(L*K1 - R*k2)/(2*C1) + [Sl*K3 + (L + R)*k2]/(2*C2)
MB = - k2*(R*K2 - L*k2)/(2*C1) + [Sl*K4 - (L + R)*k2]/(2*C2)
MC = - k2*(R*K2 - L*k2)/(2*C1) - [Sl*K4 - (L + R)*k2]/(2*C2)
N3 = - (MD - MC)/h
N2 = - N2' = (MB - MC)/l
p = 6*Sl/(l^2)
H = W
N1 = - N3 bzw. N1 = - H - N3 Grenzwerte limit values
N1 abhaengig von Sohlreibung
N1 depends on friction in ground
Mx1 = - Sl*omegaV + MA*x1'/l + MD*x1/l
My1 = My0 + MA*y1'/h + MB*y1/h
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/4 - case 98/4
Beide Stiele waagerecht belastet, von aussen her, symm
MA = MD = - k2*(L*K1 - R*k2)/C1
MB = MC = - k2*(R*K2 - L*k2)/C1
N2 = N2' = 0
- N1 = Sr/h + (MB - MA)/h
- N3 = Sl/h + (MA - MB)/h
My = My0 + MA*y'/h + MB*y/h
==> kein Bodendruck no soil pressure
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/5 - case 98/5
Oberer Riegel beliebig antimetrisch belastet
(R = - L SL = - Sr)
MD = MC = - MB = - MA = L/C2 + Sr*k1/(10*C2)
p = 6*Sr/(l^2)
N1 = N3 = 0
N2 = - N2' = - (Sr + 2*MC)/l
Mx1 = Sr*omegaV + MD*(x1 - x1')/l
Mx2 = Mx0 + MC*(x2 - x2')/l
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/6 - case 98/6
Beide Stiele waagerecht belastet, von links her, asymm
MD = - MA =[Sl*K3 + (L + R)*k2]/C2
MB = - MC =[Sl*K4 - (L + R)*k2]/C2
p = 12*Sl/(l^2)
H = 2*W
N2 = - N2' = 2*MB)/l
N3 = 0
N1 = - W bzw. N1 = + W Grenzwerte limit values
N1 abhaengig von Sohlreibung
N1 depends on friction in ground
Mx1 = - 2*Sl*omegaV + MD*(x1 - x1')/l
My = My0 + MA*y1'/h + MB*y1/h
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/7 - case 98/7
Senkrechte Einzellast am Eckpunkt B
MA = P*l*k1*[- K1 - C1/(5*C2)]/(4*C1)
MD = P*l*k1*[- K1 + C1/(5*C2)]/(4*C1)
MB = P*l*k1*[+ k2 - C1/(5*C2)]/(4*C1)
MC = P*l*k1*[+ k2 + C1/(5*C2)]/(4*C1)
p = 4*P/l
N1 = - N3 = - 3*P*l*k1*(1 + k2)/(4*h*C1)
N2' = P*k1/(10*C2)
N2 = - P - N2'
Mx1 = 2*P*l*omegaT'/3 + MA*x1'/l + MD*x1/l
omegaT' = omegaD' + i*omegaD i = 0.5

 

Fall 98/8 - case 98/8
Senkrechte Einzellasten an den Eckpunkten B und C, symm
MA = MD = - P*l*k1*K1/(2*C1)
MB = MC = + P*l*k1*k2/(2*C2)
p = 2*P/l
N1 = - N3 = - 3*P*l*k1*(1+ k2)/(2*h*C1)
N2 = N2' = - P
Mx1 = p*x1*x1'/2 + MA

 

Fall 98/9 - case 98/9
Waagerechte Einzellast am Eckpunkt B
MD = - MA = P*h*K3/(2*C2)
MB = - MC = P*h*K4/(2*C2)
p = 6*P*h/(l^2)
N2 = - N2' = P*h*K4/(l*C2)
N3 = - P/2
N1 = + P/2 bzw. N1 = - P/2 Grenzwerte limit values
N1 abhaengig von Sohlreibung
N1 depends on friction in ground
Mx1 = - P*h*omegaV + MA*(x1' - x1)/l
Mx2 = MB*(x2' - x2)/l
My1 = - My2 = MA*y1'/h + MB*y1/h

 

Fall 98/10 - case 98/10
Rechteck-Vollast auf oberem Riegel
MA = MD = - q*(l^2)*(k1*K1 - k2)/(4*C1)
MB = MC = - q*(l^2)*(K2 - k1*k2)/(4*C1)
maxM1 = q*(l^2)/8 + MA
maxM2 = q*(l^2)/8 + MB
p = q
N1 = - N3 = - (MB - MA)/h
N2 = N2' = - q*l/2
Mx1 = q*x1*x1'/2 + MA
Mx2 = q*x2*x2'/2 + MB
My = MA*y'/h + MB*y/h

 

Fall 98/11 - case 98/11
Rechteck-Vollast am linken Stiel
MA = q*(h^2)*[- k2*(k2 + 3)/(2*C1) - (K3 + k2)/C2]/4
MD = q*(h^2)*[- k2*(k2 + 3)/(2*C1) + (K3 + k2)/C2]/4
MB = q*(h^2)*[- k2*(3*k1 + k2)/(2*C1) + (K4 - k2)/C2]/4
MB = q*(h^2)*[- k2*(3*k1 + k2)/(2*C1) - (K4 - k2)/C2]/4
p = 3*q*(h^2)/(l^2)
H = q*h
N3 = - (MD - MC)/h
N2 = - N2' = (MB - MC)/l
N1 = - N3 bzw. N1 = - H - N3 Grenzwerte limit values
N1 abhaengig von Sohlreibung
N1 depends on friction in ground
Mx1 = - q*(h^2)*omegaV/2 + MA*x1'/l + MD*x1/l
My1 = q*y1*y1'/2 + MA*y1'/h + MB*y1/h

 

Fall 98/12 - case 98/12
Rechteck-Vollast an beiden Stielen, symmetrisch
MA = MD = - q*(h^2)*k2*(k2 + 3)/(4*C1)
MB = MC = - q*(h^2)*k2*(3*k1 + k2)/(4*C1)
My = q*(h^2)*omegaD'/2 + MA*y'/h + MB*y/h

 

Fall 98/13 - case 98/13
Dreiecklast an beiden Stielen, symmetrisch
MA = MD = - q*(h^2)*k2*(3*k2 + 8)/(20*C1)
MB = MC = - q*(h^2)*k2*(7*k1 + 2*k2)/(20*C1)
My = q*(h^2)*omegaD'/6 + MA*y'/h + MB*y/h

 

Fall 98/14 - case 98/14
Oberer Riegel beliebig senkrecht belastet, symmetrisch (Bodendruck = Trapez)
MA = MD = - (F*l*k1*K1*m - 4*L*k2)/(4*C1)
MB = MC = - (4*L*K2 - F*l*k1*k2*m)/(4*C1)
pa = 2*F/[l*(1 + alpha)]
Mx2 = Mx0 + MB
N1 = - N3 = (MA - MB)/h
N2 = N2' = - F/2
alpha = pi/pa 0 <= alpha <= 1
m = (3 + 5*alpha)/[4*(1 + alpha)]
Mx1 = alpha*pa*x1*x1'/2 + (1 - alpha)*pa*(l^2)*{1 - [(x1' - e)/e]^3}/24 + MA
==> Belastungsglieder - load terms: L, R, Sl, Sr, F, W, Mx0, My0

 

Fall 98/15 - case 98/15
Senkrechte Einzellasten an den Eckpunkten B und C, symm (Bodendruck = Trapez)
MA = MD = - (P*l*k1*K1*m)/(2*C1)
MB = MC = (P*l*k1*k2*m)/(2*C1)
pa = 4*P/[l*(1 + alpha)]
alpha = pi/pa 0 <= alpha <= 1
m = (3 + 5*alpha)/[4*(1 + alpha)]
Mx1 = alpha*pa*x1*x1'/2 + (1 - alpha)*pa*(l^2)*{1 - [(x1' - e)/e]^3}/24 + MA

 

Fall 98/16 - case 98/16
Rechteck-Vollast auf oberem Riegel (Bodendruck = Trapez)
MA = MD = - (q*(l^2)*(k1*K1*m - k2))/(4*C1)
MB = MC = - (q*(l^2)*(K2 - k1*k2*m))/(4*C1)
pa = 2*q/(1 + alpha)
alpha = pi/pa 0 <= alpha <= 1
m = (3 + 5*alpha)/[4*(1 + alpha)]
Mx1 = alpha*pa*x1*x1'/2 + (1 - alpha)*pa*(l^2)*{1 - [(x1' - e)/e]^3}/24 + MA